Exercise 3

Convert each of the following IVPs in 1–8 to an equivalent Volterra integral equation:

$$y'' + 4y = 0$$
, $y(0) = 0$, $y'(0) = 1$

Solution

Let

$$y''(x) = u(x). (1)$$

Integrate both sides from 0 to x.

$$\int_0^x y''(t) dt = \int_0^x u(t) dt$$
$$y'(x) - y'(0) = \int_0^x u(t) dt$$

Substitute y'(0) = 1 and bring it to the right side.

$$y'(x) = 1 + \int_0^x u(t) dt$$
 (2)

Integrate both sides again from 0 to x.

$$\int_0^x y'(s) \, ds = \int_0^x \left[1 + \int_0^s u(t) \, dt \right] ds$$
$$y(x) - y(0) = x + \int_0^x \int_0^s u(t) \, dt \, ds$$

Substitute y(0) = 0 and use integration by parts to write the double integral as a single integral. Let

$$v = \int_0^s u(t) dt \qquad dw = ds$$
$$dv = u(s) ds \qquad w = s$$

and use the formula $\int v \, dw = vw - \int w \, dv$.

$$y(x) = x + s \int_0^s u(t) dt \Big|_0^x - \int_0^x su(s) ds$$

$$= x + x \int_0^x u(t) dt - \int_0^x su(s) ds$$

$$= x + x \int_0^x u(t) dt - \int_0^x tu(t) dt$$

$$= x + \int_0^x (x - t)u(t) dt$$
(3)

Substitute equations (1), (2), and (3) into the original ODE.

$$y'' + 4y = 0 \rightarrow u(x) + 4\left[x + \int_0^x (x - t)u(t) dt\right] = 0$$

Therefore, the equivalent Volterra integral equation is

$$u(x) = -4x - 4 \int_0^x (x - t)u(t) dt.$$