Exercise 3

Convert each of the following IVPs in $1-8$ to an equivalent Volterra integral equation:

$$
y^{\prime \prime}+4 y=0, y(0)=0, y^{\prime}(0)=1
$$

Solution

Let

$$
\begin{equation*}
y^{\prime \prime}(x)=u(x) . \tag{1}
\end{equation*}
$$

Integrate both sides from 0 to x.

$$
\begin{aligned}
\int_{0}^{x} y^{\prime \prime}(t) d t & =\int_{0}^{x} u(t) d t \\
y^{\prime}(x)-y^{\prime}(0) & =\int_{0}^{x} u(t) d t
\end{aligned}
$$

Substitute $y^{\prime}(0)=1$ and bring it to the right side.

$$
\begin{equation*}
y^{\prime}(x)=1+\int_{0}^{x} u(t) d t \tag{2}
\end{equation*}
$$

Integrate both sides again from 0 to x.

$$
\begin{aligned}
& \int_{0}^{x} y^{\prime}(s) d s=\int_{0}^{x}\left[1+\int_{0}^{s} u(t) d t\right] d s \\
& y(x)-y(0)=x+\int_{0}^{x} \int_{0}^{s} u(t) d t d s
\end{aligned}
$$

Substitute $y(0)=0$ and use integration by parts to write the double integral as a single integral. Let

$$
\begin{array}{rr}
v=\int_{0}^{s} u(t) d t & d w=d s \\
d v=u(s) d s & w=s
\end{array}
$$

and use the formula $\int v d w=v w-\int w d v$.

$$
\begin{align*}
y(x) & =x+\left.s \int_{0}^{s} u(t) d t\right|_{0} ^{x}-\int_{0}^{x} s u(s) d s \\
& =x+x \int_{0}^{x} u(t) d t-\int_{0}^{x} s u(s) d s \\
& =x+x \int_{0}^{x} u(t) d t-\int_{0}^{x} t u(t) d t \\
& =x+\int_{0}^{x}(x-t) u(t) d t \tag{3}
\end{align*}
$$

Substitute equations (1), (2), and (3) into the original ODE.

$$
y^{\prime \prime}+4 y=0 \quad \rightarrow \quad u(x)+4\left[x+\int_{0}^{x}(x-t) u(t) d t\right]=0
$$

Therefore, the equivalent Volterra integral equation is

$$
u(x)=-4 x-4 \int_{0}^{x}(x-t) u(t) d t .
$$

